Impact of Bioconvection and Chemical Reaction on MHD Nanofluid Flow Due to Exponential Stretching Sheet

نویسندگان

چکیده

Thermal management is a crucial task in the present era of miniatures and other gadgets compact heat density. This communication presents momentum thermal transportation nanofluid flow over sheet that stretches exponentially. The fluid moves through porous matrix presence magnetic field perpendicular to direction. To achieve main objective efficient with increased conductivity, possible settling nano entities avoided bioconvection microorganisms. Furthermore, radiation, source dissipation, activation energy are also considered. formulation form partial differential equation transmuted into an ordinary implementation appropriate similarity variables. Numerical treatment involving Runge–Kutta along shooting technique method was chosen resolve boundary values problem. elucidate physical insights problem, computational code run for suitable ranges involved parameters. temperature directly rose buoyancy ratio parameter, Rayleigh number, Brownian motion thermophoresis parameter. Thus, enhances inclusion findings useful exchangers working various technological processors. validation obtained results assured comparison existing result. satisfactory concurrence observed while comparing symmetrical literature.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MHD Natural Convection Flow of Casson Nanofluid over Nonlinearly Stretching Sheet Through Porous Medium with Chemical Reaction and Thermal Radiation

In the present work, the effects of chemical reaction on hydromagnetic natural convection flow of Casson nanofluid induced due to nonlinearly stretching sheet immersed in a porous medium under the influence of thermal radiation and convective boundary condition are performed numerically. Moreover, the effects of velocity slip at stretching sheet wall are also examined in this study. The highly ...

متن کامل

MHD Three-Dimensional Stagnation-Point Flow and Heat Transfer of a Nanofluid over a Stretching Sheet

In this study, the three-dimensional magnetohydrodynamic (MHD) boundary layer of stagnation-point flow in a nanofluid was investigated. The Navier–Stokes equations were reduced to a set of nonlinear ordinary differential equations using a similarity transform. The similarity equations were solved for three types of nanoparticles: copper, alumina and titania with water as the base fluid, to inve...

متن کامل

Spectral Quasi-linearization for MHD Nanofluid Stagnation Boundary Layer Flow due to a Stretching/Shrinking Surface

This article concentrates on the effect of MHD heat mass transfer on the stagnation point nanofluid flow over a stretching or shrinking sheet with homogeneous-heterogeneous reactions. The flow analysis is disclosed in the neighborhood of stagnation point. Features of heat transport are characterized with Newtonian heating. The homogeneous-heterogeneous chemical reaction between the fluid and di...

متن کامل

Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are red...

متن کامل

Numerical Solution of MHD of Boundary Layer Flow of Nanofluid Fluids Due to Porous Stretching Surface

In this study we have explored the numerical solution of MHD flow of an incompressible nanofluid towards a stretching surface. The obtained model of nonlinear partial differential equations is converted into a set of ordinary differential equations using an appropriate transformation. Shooting method is employed to solve the said system of boundary layer equations. Discussion of momentum, tempe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2021

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym13122334